Disproportionate Dwarfism in a Wild Asian Elephant

Rohan Wijesinha1, Nadika Hapuarachchi2, Brad Abbott, Jennifer Pastorini3,4 and Prithiviraj Fernando3*

1Federation of Environmental Organizations, Thimbirigasyaya, Sri Lanka
2Wildlife Conservation Society - Galle, Biodiversity Research & Education Center, Galle, Sri Lanka
3Centre for Conservation and Research, Rajagiriya, Sri Lanka
4Anthropologisches Institut, Universität Zürich, Zürich, Switzerland
*Corresponding author: pruthu62@gmail.com

Introduction

Dwarfism is unusual in wild animals. Individuals with disproportionate dwarfism are especially unlikely to survive in the wild as shorter limbs would impose severe fitness costs in predators or prey. As social mega-herbivores without predators, Asian elephants are one of the very few species in whom a dwarf phenotype may not be lethal. Here we report the first record of a free ranging adult wild animal - an Asian elephant (Elephas maximus), with disproportionate dwarfism (Fig. 1).

Observation of dwarf elephant

On July 7, 2013, at approximately 6:30 am, two elephants were observed ‘sparring’ on the main road of the Udawalawe National Park in southern Sri Lanka (Fig. 2). While this is not an unusual sight in itself, with around 1000 elephants in the 308 km² area of Udawalawe (de Silva et al. 2011), one of the protagonists was a mature male of just over five feet (1.5 m) in height. It had a normal sized upper body, with well developed male secondary sexual characteristics such as a large head, broad trunk-base, pronounced nasal bump and prominent temporal protuberances (Varma et al. 2012), but had very short, stubby legs. The other elephant was of normal stature. Both displayed temporal gland secretions (Fig. 3), indicative of ‘musth’ - an annual physiological state in male elephants with heightened aggression and increased ranging behaviour (Fernando et al. 2008). The ‘dwarf’ was by far the main aggressor in the altercation and appeared to be older than the other, a young-adult. Other than for the disproportionately short legs, morphologically and behaviourally the dwarf elephant appeared normal. Absence of previous records and body lumps from gunshot injuries indicative of crop raiding outside the park, suggest that he was not a resident but wandered into the park during musth ranging.

Forms of dwarfism

Two main phenotypic forms of dwarfism occur, proportionate and disproportionate. In proportionate dwarfism ‘normal’ allometric ratios of the body and limbs are preserved, whereas in disproportionate dwarfism the limbs are comparatively short. Both types of dwarfism are observed in humans. In domestic animals dwarf phenotypes have been selectively bred, creating a number of distinct breeds in dogs, cattle, horses, rabbits and other livestock. Selective breeding for proportionate dwarfism has produced a number of ‘miniature’ breeds of dogs and cats. Selection for disproportionate dwarfism has produced dog breeds such as the dachshund, basset hound and
bulldog; cat breeds such as the munchkin; cattle breeds such as the Japanese brown and Dexter; goat breeds such as the Ethiopian dwarf goat and pig breeds such as the Vietnamese potbellied pig.

Disproportionate dwarfism occurs due to genetic defects involving cartilage and/or bone growth of long bones. Achondroplasia is the commonest cause of disproportionate dwarfism in humans. Inherited as an autosomal dominant disorder it originates from a single point mutation in the transmembrane domain of the Fibroblast Growth Factor receptor 3 (FGFR-3) gene (Shiang & Thompson 1994). The genetic mutation in osteochondrodysplastic dog breeds is not the same as in humans (Martinez et al. 2000) and is inherited as a polygenic trait (Minor & Farnum 1988). The Dexter phenotype of disproportionate dwarfism in cattle is shown by heterozygotes of an allele caused by a mutation in the Aggrecan gene that is lethal in homozygotes (Cavanagh et al. 2007). Chondroplastic dwarfism in Japanese brown cattle shows autosomal recessive inheritance and is due to a mutation in the Limbin gene (Takeda et al. 2002). Given the diversity of genetic mutations and inheritance patterns causing disproportionate dwarfism in different taxa, it is not possible to speculate on the provenance or likely inheritance of the character in elephants.

Dwarf and pygmy elephants

Anecdotal accounts of ‘pygmy’ or ‘dwarf’ elephants are common in elephant-lore of many countries (Groves & Grubb 2000; Das 2005; Saparamdu 2006). However such accounts are likely to have originated from cursory observations of juvenile groups. In contrast, Mediterranean dwarf elephants were a classic example of insular dwarfism. Proportionate dwarfism with 1.5-2 m adult height occurred in Mediterranean island elephantids in the Pleistocene (Orlando et al. 2007). Insular isolation of Elephas antiquus or Mammuthus and allopatric speciation is thought to have given rise to these dwarf taxa including Elephas falconeri and Elephas creticus. The last of these Mediterranean dwarf elephants may have survived till about 10,000 YBP (Orlando et al. 2007). Asian elephants in Borneo, isolated since the Pleistocene (Fernando et al. 2003) are also called pygmy-elephants. However, they are not significantly smaller than their Sundiac conspecifics (Othman et al. 2008). Although the occurrence of an African dwarf elephant (Elephas pumilio) has been suggested in the past, such references probably allude to the smaller size of Loxodonta cyclotis, in comparison with L. africana rather than actual dwarfism (Groves & Grubb 2000).

References


de Silva S, Ranjeewa ADG & Weerakoon D (2011) Demography of Asian elephants (Elephas

Figure 2. Dwarf elephant interacting with ‘normal’ adult male. Video clips of the encounter can be watched online at <http://www.flickr.com/photos/54907779@N03/sets/72157634655101151>.
maximus) at Uda Walawe National Park, Sri Lanka based on identified individuals. Biological Conservation 144: 1742-1752.


Shiang R & Thompson L (1994) Mutations in the transmembrane domain of FGFR-3 cause the most common genetic form of dwarfism, achondroplasia. Cell 78: 335-342.
