First Confirmed Case of Fatal Tuberculosis in a Wild Sri Lankan Elephant

B. V. P. Perera¹*, M. A. Salgadu², G. S. P. de S. Gunawardena², N. H. Smith³ and H. R. N. Jinadasa²

¹Elephant Transit Home, Department of Wildlife Conservation, Udawalawe, Sri Lanka
²Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, Sri Lanka.
³Animal and Plant Health Agency, Weybridge, U.K.
*Corresponding author’s e-mail: vijithawildlife@gmail.com

Tuberculosis (TB) is a major emerging infectious disease among captive elephants worldwide and a potential concern for wild populations. The major causative agent for TB in elephants is Mycobacterium tuberculosis, which is also the primary causative agent for human TB (Fowler & Mikota 2006). Other members of the M. tuberculosis complex particularly M. avium and M. bovis, and non-tuberculosis mycobacteria have been associated with the infection of both African and Asian elephants (Shojaei et al. 2000; Payeur et al. 2002; Lacasse et al. 2007; Lyashchenko et al. 2015). To the best of our knowledge, no confirmed cases of TB have been reported in wild Asian elephants (Elephas maximus), and there are no confirmed cases reported in captive or wild Sri Lankan elephants.

An emaciated ~35-year-old female wild Sri Lankan elephant was found in a moribund state (Fig. 1) in the corridor between the Udawalawe National Park and Lunugamwehera National Park, Sri Lanka. She was accompanied by a 1.5 year-old female calf (Fig. 1). The adult elephant died after two days of treatment with antibiotics and supportive therapy. Variable-sized multifocal to coalescing yellow-grey nodules with caseous centres affecting >60% of the lung tissue were observed during post-mortem examination. The lesions were highly suggestive of pulmonary TB (Fig. 2). Similar lesions were not observed in any other tissue.

Histopathological examination of the lung lesions revealed that the pulmonary tissue was effaced by coalescing, multiple granulomas of variable sizes (Figs. 3 & 4). These tuberculous granulomas (tubercles) contained a centre of caseous necrosis and peripheral fibroplasia with a granulomatous inflammatory reaction characterized by the presence of macrophages, epithelioid cells, lymphocytes and plasma cells.

Figure 1. The elephant at presentation, immediately after the initiation of I/V fluids.
cells, further supporting the gross pathological observations of pulmonary tuberculosis.

A pure culture of acid fast bacilli was isolated on Lowenstein-Jensen (LJ) medium with glycerol, from the lung lesions approximately three weeks post inoculation (Fig. 5). The isolate also grew on LJ medium with sodium pyruvate, but at a slower rate. Glycerol enhances the growth of *M. tuberculosis* while it is inhibitory to *M. bovis*. Added sodium pyruvate has no effect on the growth of *M. tuberculosis* but enhances the growth of *M. bovis* (Quinn et al. 2011). No other bacteria or fungi were recovered on conventional media.

Since routine biochemical identification of acid fast bacilli is time consuming, molecular methods were used to identify the isolate. Due to a very high degree of conservation in housekeeping genes among the members of *M. tuberculosis* complex, the presence or absence of variable regions in the *Mycobacterium* genome known as genomic Regions of Difference (RD) are used as markers for molecular identification (Brosch et al. 2002). Accordingly, PCR was performed to detect the presence or absence of RD9 as described by Brosch et al. (2002). The RD9 is present only in *M. tuberculosis* except in the rare isolates of “*M. canetti***”, which were reported only in humans from East Africa and France (van Soolingen et al. 1997; Brosch et al. 2002). Reference culture DNA of *M. tuberculosis* and *M. bovis* obtained from Animal and Plant Health Agency, Weybridge, UK was used as controls.

The PCR results for this isolate demonstrated the presence of an intact RD9 (Fig. 6), strongly suggesting the isolate was *M. tuberculosis*. The presence of clear bands corresponding to 364
bp in the RD9 internal PCR (lanes 1 & 2) and absence of bands in the RD9 flanking PCR (lanes 1 & 2) demonstrate the presence of an intact RD9 (Brosch et al. 2002). No bands are visible with the flanking primers because the product generated by an intact RD9 is 2.5 kb, and thus not visualized (Brosch et al. 2002). In contrast, strains that lack RD9 (such as M. bovis, used as a control here) generate a smaller product of 472 bp (Brosch et al. 2002). M. canetti is the only other member of the M. tuberculosis complex having an intact RD9 has clearly different colony morphology in primary isolates compared to M. tuberculosis (van Soolingen et al. 1997). Therefore, the presence of an intact RD9 and growth characteristics of this Mycobacterium isolate confirm its identity as M. tuberculosis.

Numerous cases of TB have been reported in captive Asian elephants (Mikota et al. 2001; Dumonceaux et al. 2011; Ong et al. 2013). There is also evidence that TB can be transmitted between elephants and humans (Oh et al. 2002; Murphree et al. 2011). In one case, an elephant and handler with active TB shared the same strain but the direction of transmission (elephant to human or human to elephant) was not determined (Michalak et al. 1998). Acid fast bacilli were observed in lung tissue from a wild African elephant that had a history of human contact and died from a suspected M. tuberculosis infection (Obanda et al. 2013).

Our report is the first confirmed case of fatal TB in a wild Asian elephant, and also the first confirmed case of TB in a captive or wild Sri Lankan elephant. The source of infection for this elephant is unknown as no information was available on its human contacts if any, and there are no known wild reservoirs of M. tuberculosis in Sri Lanka. This case demonstrates that Asian elephants can be infected with M. tuberculosis in the wild, and develop fatal tuberculosis.

Acknowledgements

The authors thank Dr. Susan Mikota (Elephant Care International, USA) for thoughtful comments and Prof. Vasanthi Thevanesam, Dr. Champa Ratnatunga (University of Peradeniya, Sri Lanka) and Dr. Dhammika Magana-Arachchi (Institute of Fundamental Studies, Sri Lanka) for consultations and training laboratory personnel. Mr. Sampath Bandara and Mrs. Waruni Jayaweera (University of Peradeniya, Sri Lanka) provided technical assistance.

References

Figure 6. Ethidium bromide stained agarose gel image of PCR results for RD9. The presence of clear bands at 364 bp level in RD9 internal PCR (lanes 1 & 2) and absence of bands in RD9 flanking PCR (lanes 1 & 2) demonstrates the presence of intact RD9 region. Lane 1 = DNA from Mycobacterium isolate, lane 2 = M. tuberculosis (H37Rv) reference DNA, lane 3 = M. bovis (61/2122/97) reference DNA, lane 4 = negative control.

